Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

N. Srinivasan, ${ }^{\text {a }}$ B. Sridhar ${ }^{\text {b }}$ and R. K. Rajaram ${ }^{b_{*}}$

${ }^{\text {a }}$ Department of Physics, Thiagarajar College, Madurai 625 009, India, and ${ }^{\text {b }}$ Department of Physics, Madurai Kamaraj University, Madurai 625 021, India

Correspondence e-mail: sshiya@yahoo.com

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.009 \AA$
R factor $=0.069$
ωR factor $=0.196$
Data-to-parameter ratio $=11.8$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Hydrogen bis[L-lysinium(2+)] dichloride perchlorate

In the title compound, $2 \mathrm{C}_{6} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{O}_{2}^{+} \cdot \mathrm{H}^{+} \cdot \mathrm{ClO}_{4}^{-} \cdot 2 \mathrm{Cl}^{-}$, the two mono- and dicationic lysinium molecules are held together by strong $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds. Both the perchlorate and chloride anions link molecules 1 and 2 through the α-amino and ε-amino groups into infinite chains along the a axis. The aggregation of the hydrophilic groups is along the $z=0$ plane and that of hydrophobic is along the $z=\frac{1}{4}$ plane. Molecule 1 is engaged in a zigzag (Z1) head-to-tail sequence.

Comment

Lysine is one of the four amino acids having basic side chains. The crystal structure of L-lysine monohydrochloride dihydrate (Wright \& Marsh, 1962; Koetzle et al., 1972) and L-lysine semi maleate (Pratap et al., 2000) have been reported. In the present study, the analysis of lysine hydrochloride reacted with perchloric acid, (I), was undertaken.

(I)

Both the lysinium molecules (1 and 2) in the asymmetric unit are cationic, with ε-amino groups accepting an H atom from hydrochloric acid. The H atom of the perchloric acid is liberated and bonded with molecule 2 and, as a result, the perchloric acid exists as perchlorate anion. The lysinium molecules have two planar configurations, the carboxyl group and aliphatic chain terminating at the ε-amino group. The amino N atom deviates from the carboxyl plane by 0.164 (4) and 0.126 (4) \AA in lysinium molecules 1 and 2 , which corresponds to the twisting of the $\mathrm{C}-\mathrm{N}$ bond out of the carboxyl group by -6.0 (6) and 5.7 (7) ${ }^{\circ}$, respectively in molecule 1 and 2. This tendency of twisting of the $\mathrm{C}-\mathrm{N}$ bond is found in various amino acids (Lakshminarayanan et al., 1967). The average value of the four $\mathrm{C}-\mathrm{C}-\mathrm{C}$ angles is 112.6 and 117.1° in molecules 1 and 2 , which is significantly greater than the

Received 11 May 2001
Accepted 13 August 2001
Online 31 August 2001

Figure 1
The structure of (I) showing the atomic numbering scheme and 50% probability displacement ellipsoids (Johnson, 1976).

Figure 2
Packing of the molecules viewed down the a axis.
tetrahedral value. However, the angle $\mathrm{C}^{\alpha}-\mathrm{C}^{\beta}-\mathrm{C}^{\gamma}$ of 114.0 (4) and $117.4(8)^{\circ}$ for both molecules 1 and 2 are appreciably large. Similar results are found in other amino acids and peptides, and this widening might be due to the steric effect of an atom hydrogen bonded to the $\mathrm{NH}_{3}{ }^{+}$group (Leung \& Marsh, 1958). While molecule 1, as expected, has a fully extended conformation for the side chain $\left[\chi^{1}=\right.$ $-163.2(6)^{\circ}, \chi^{2}=-178.2(6)^{\circ}, \quad \chi^{3}=177.1(7)^{\circ}$ and $\chi^{4}=$ $\left.-177.5(6)^{\circ}\right]$, molecule 2 does not have a fully extended
conformation $\left[\chi^{1}=70.9(10)^{\circ}, \chi^{2}=179.2(8)^{\circ}, \chi^{3}=-70.6(14)^{\circ}\right.$ and $\chi^{4}=-169.8(9)^{\circ}$; Pratap et al., 2000].

In the crystal, molecules 1 and 2 are bonded through a strong $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond between the carboxyl O atoms. Lysinium molecule 1 is engaged in a zigzag (Z1) head-to-tail sequence since $\mathrm{N} 11-\mathrm{H} 11 A \cdots \mathrm{O} 1 A^{\text {ii }}$ [symmetry code: (ii) $\left.x-\frac{1}{2},-y+\frac{3}{2},-z\right]$ connects two 2_{1}-related amino acids (Vijayan, 1988). The perchlorate anion links through the ε amino group of four lysinium molecules extending in an infinite chain along the a axis. Both the chloride anions link lysinium molecules 1 and 2 through the α-amino and ε-amino groups into infinite chains along the a axis. The Cl 2 atom, as acceptor, links (i) two lysinium molecules 1 , through their α amino groups and (ii) the two lysinium molecules 2 , through the ε-amino groups. Similarly the Cl 3 atom links (i) the two lysinium molecules 1 through the ε-amino groups and (ii) the two lysinium molecules 2 through the α-amino groups. The hydrophobic groups aggregate along the $z=\frac{1}{4}$ plane and the hydrophilic groups along the $z=0$ plane.

Experimental

The title compound was crystallized in an aqueous solution from a 2:1 stoichiometric ratio of L-lysine hydrochloride and perchloric acid. Colorless transparent and plate-like crystals were grown.

Crystal data

$\mathrm{C}_{6} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{O}_{2}{ }^{+} \cdot \mathrm{C}_{6} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2}{ }^{2+}{ }^{+}$.
$\mathrm{ClO}_{4}{ }^{-} \cdot 2 \mathrm{Cl}^{-}$
$M_{r}=465.76$
Orthorhombic, $P 2_{1} 2_{1} 2_{1}$
$a=5.0264$ (6) \AA
$b=20.822(2) \AA$
$c=20.897$ (2) \AA
$V=2187.1(4) \AA^{3}$
$Z=4$
$D_{x}=1.415 \mathrm{Mg} \mathrm{m}^{-3}$
$D_{m}=1.413 \mathrm{Mg} \mathrm{m}^{-3}$

Data collection

Enraf-Nonius sealed-tube diffractometer
$\omega-2 \theta$ scans
Absorption correction: ψ scan
(North et al., 1968)
$T_{\min }=0.859, T_{\max }=0.891$
3207 measured reflections
2905 independent reflections
2427 reflections with $I>2 \sigma(I)$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.069$
$w R\left(F^{2}\right)=0.196$
$S=1.06$
2905 reflections
246 parameters
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.1519 P)^{2}\right.$
$+0.4185 P]$
where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
D_{m} measured by flotation in a mixture of carbon tetrachloride and xylene
Mo $K \alpha$ radiation
Cell parameters from 25 reflections
$\theta=11.3-13.2^{\circ}$
$\mu=0.46 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Plate, colorless
$0.50 \times 0.40 \times 0.25 \mathrm{~mm}$
$R_{\text {int }}=0.069$
$\theta_{\text {max }}=25.0^{\circ}$
$h=-1 \rightarrow 5$
$k=-1 \rightarrow 24$
$l=-2 \rightarrow 24$
3 standard reflections frequency: 60 min intensity decay: none
$(\Delta / \sigma)_{\max }=0.003$
$\Delta \rho_{\max }=0.66 \mathrm{e}^{\AA^{-3}}$
$\Delta \rho_{\min }=-0.63 \mathrm{e}^{-3}$
Extinction correction: SHELXL97
Extinction coefficient: 0.007 (2)
Absolute structure: Flack (1983)
Flack parameter $=0.04(15)$

Table 1
Selected geometric parameters $\left(\AA^{\circ},{ }^{\circ}\right)$.

$\mathrm{O} 1 A-\mathrm{C} 11$	$1.236(7)$	$\mathrm{O} 2 A-\mathrm{C} 21$	$1.203(7)$
$\mathrm{O} 1 B-\mathrm{C} 11$	$1.250(7)$	$\mathrm{O} 2 B-\mathrm{C} 21$	$1.284(8)$
			$5.7(7)$
$\mathrm{O} 1 A-\mathrm{C} 11-\mathrm{C} 12-\mathrm{N} 11$	$-6.0(6)$	$\mathrm{O} 2 A-\mathrm{C} 21-\mathrm{C} 22-\mathrm{N} 21$	$70.9(10)$
$\mathrm{N} 11-\mathrm{C} 12-\mathrm{C} 13-\mathrm{C} 14$	$-163.2(6)$	$\mathrm{N} 21-\mathrm{C} 22-\mathrm{C} 23-\mathrm{C} 24$	$79.2(8)$
$\mathrm{C} 12-\mathrm{C} 13-\mathrm{C} 14-\mathrm{C} 15$	$-178.2(6)$	$\mathrm{C} 22-\mathrm{C} 23-\mathrm{C} 24-\mathrm{C} 25$	179.
$\mathrm{C} 13-\mathrm{C} 14-\mathrm{C} 15-\mathrm{C} 16$	$177.1(7)$	$\mathrm{C} 23-\mathrm{C} 24-\mathrm{C} 25-\mathrm{C} 26$	$-70.6(14)$
$\mathrm{C} 14-\mathrm{C} 15-\mathrm{C} 16-\mathrm{N} 12$	$-177.5(6)$	$\mathrm{C} 24-\mathrm{C} 25-\mathrm{C} 26-\mathrm{N} 22$	$-169.8(9)$

Table 2
Hydrogen-bonding geometry ($\mathrm{A},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 2 B-\mathrm{H} 2 B \cdots \mathrm{O} 1 B^{\mathrm{i}}$	0.82	1.65	2.453 (7)	166
$\mathrm{N} 11-\mathrm{H} 11 A \cdots \mathrm{O} 1 A^{\text {ii }}$	0.89	1.98	2.810 (5)	156
$\mathrm{N} 11-\mathrm{H} 11 B \cdots \mathrm{Cl} 2$	0.89	2.48	3.343 (5)	164
$\mathrm{N} 11-\mathrm{H} 11 \mathrm{C} \cdots \mathrm{Cl} 2^{\text {iii }}$	0.89	2.53	3.410 (5)	170
$\mathrm{N} 12-\mathrm{H} 12 A \cdots \mathrm{O} 4^{\text {iv }}$	0.89	2.36	3.041 (6)	134
$\mathrm{N} 12-\mathrm{H} 12 A \cdots \mathrm{O}{ }^{\text {v }}$	0.89	2.41	3.109 (7)	136
$\mathrm{N} 12-\mathrm{H} 12 B \cdots \mathrm{Cl} 3$	0.89	2.48	3.314 (5)	156
$\mathrm{N} 12-\mathrm{H} 12 \mathrm{C} \cdots \mathrm{Cl}^{\text {vi }}$	0.89	2.34	3.223 (5)	170
$\mathrm{N} 21-\mathrm{H} 21 A \cdots \mathrm{Cl}^{\text {vi }}$	0.89	2.39	3.261 (4)	168
$\mathrm{N} 21-\mathrm{H} 21 B \cdots \mathrm{Cl} 3$	0.89	2.37	3.258 (5)	179
$\mathrm{N} 21-\mathrm{H} 21 C \cdots \mathrm{Cl} 2^{\text {iv }}$	0.89	2.41	3.284 (4)	168
$\mathrm{N} 22-\mathrm{H} 22 A \cdots \mathrm{O} 1^{\text {iii }}$	0.89	2.18	2.960 (7)	146
$\mathrm{N} 22-\mathrm{H} 22 A \cdots \mathrm{O} 3$	0.89	2.58	3.088 (8)	117
$\mathrm{N} 22-\mathrm{H} 22 B \cdots \mathrm{Cl} 2^{\text {iii }}$	0.89	2.40	3.289 (6)	174
$\mathrm{N} 22-\mathrm{H} 22 \mathrm{C} \cdots \mathrm{Cl} 2$	0.89	2.34	3.220 (5)	168

Symmetry codes: (i) $2-x, y-\frac{1}{2}, \frac{1}{2}-z$; (ii) $x-\frac{1}{2}, \frac{3}{2}-y,-z$; (iii) $1+x, y, z$; (iv) $\frac{1}{2}-x, 1-y, \frac{1}{2}+z$; (v) $-x, \frac{1}{2}+y, \frac{1}{2}-z$; (vi) $x-1, y, z$.

All H atoms were fixed by geometric constraints and were allowed to ride on the attached atom. Intensities for 225 Friedel pairs were
measured, resulting in a Flack parameter of 0.04 (15). Atoms C23, C24, C25 and C26 showed large displacement amplitudes with unusual $\mathrm{C}-\mathrm{C}$ distances, indicating disorder. Since a satisfactory disorder model was not found, these atoms were refined by constraining the bond distances involving them.

Data collection: CAD-4 Software (Enraf-Nonius, 1989); cell refinement: CAD-4 Software; data reduction: CAD-4 Software; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 1999); software used to prepare material for publication: SHELXL97.

The authors BS and RKR thank the Department of Science and Technology (DST), India, for financial support.

References

Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Koetzle, T. F., Lehmann, M. S., Verbist, J. J. \& Hamilton, W. C. (1972). Acta Cryst. B28, 3207-3219.
Leung, Y. \& Marsh, R. E. (1958). Acta Cryst. 11, 17-31.
Lakshminarayanan, A. V., Sashisekaran, V. \& Ramachandran, G. N. (1967). In Conformation of Biopolymers, edited by G. N. Ramachandran. London: Academic Press.
North, A. C. T., Philips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351359.

Pratap, J. V., Ravishankar, R. \& Vijayan, M. (2000). Acta Cryst. B56, 690-696.
Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.
Spek, A. L. (1999). PLATON for Windows. Utrecht University, The Netherlands.
Vijayan, M. (1988). Prog. Biophys. Mol. Biol. 52, 71-99.
Wright, D. A. \& Marsh, R. E. (1962). Acta Cryst. 15, 54-64.

